Extensions 1→N→G→Q→1 with N=C3xC32:2C8 and Q=C2

Direct product G=NxQ with N=C3xC32:2C8 and Q=C2
dρLabelID
C6xC32:2C848C6xC3^2:2C8432,632

Semidirect products G=N:Q with N=C3xC32:2C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC32:2C8):1C2 = C32:2D24φ: C2/C1C2 ⊆ Out C3xC32:2C8248+(C3xC3^2:2C8):1C2432,588
(C3xC32:2C8):2C2 = C33:8SD16φ: C2/C1C2 ⊆ Out C3xC32:2C8248+(C3xC3^2:2C8):2C2432,589
(C3xC32:2C8):3C2 = C3xC32:D8φ: C2/C1C2 ⊆ Out C3xC32:2C8244(C3xC3^2:2C8):3C2432,576
(C3xC32:2C8):4C2 = S3xC32:2C8φ: C2/C1C2 ⊆ Out C3xC32:2C8488-(C3xC3^2:2C8):4C2432,570
(C3xC32:2C8):5C2 = C33:5(C2xC8)φ: C2/C1C2 ⊆ Out C3xC32:2C8248+(C3xC3^2:2C8):5C2432,571
(C3xC32:2C8):6C2 = C33:M4(2)φ: C2/C1C2 ⊆ Out C3xC32:2C8488-(C3xC3^2:2C8):6C2432,572
(C3xC32:2C8):7C2 = C33:2M4(2)φ: C2/C1C2 ⊆ Out C3xC32:2C8248+(C3xC3^2:2C8):7C2432,573
(C3xC32:2C8):8C2 = C3xC32:2SD16φ: C2/C1C2 ⊆ Out C3xC32:2C8244(C3xC3^2:2C8):8C2432,577
(C3xC32:2C8):9C2 = C3xC32:M4(2)φ: C2/C1C2 ⊆ Out C3xC32:2C8484(C3xC3^2:2C8):9C2432,629
(C3xC32:2C8):10C2 = C3xC62.C4φ: C2/C1C2 ⊆ Out C3xC32:2C8244(C3xC3^2:2C8):10C2432,633
(C3xC32:2C8):11C2 = C3xC3:S3:3C8φ: trivial image484(C3xC3^2:2C8):11C2432,628

Non-split extensions G=N.Q with N=C3xC32:2C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC32:2C8).1C2 = C3xC2.F9φ: C2/C1C2 ⊆ Out C3xC32:2C8488(C3xC3^2:2C8).1C2432,565
(C3xC32:2C8).2C2 = C33:3Q16φ: C2/C1C2 ⊆ Out C3xC32:2C8488-(C3xC3^2:2C8).2C2432,590
(C3xC32:2C8).3C2 = C3xC32:Q16φ: C2/C1C2 ⊆ Out C3xC32:2C8484(C3xC3^2:2C8).3C2432,578
(C3xC32:2C8).4C2 = C6.F9φ: C2/C1C2 ⊆ Out C3xC32:2C8488(C3xC3^2:2C8).4C2432,566

׿
x
:
Z
F
o
wr
Q
<